

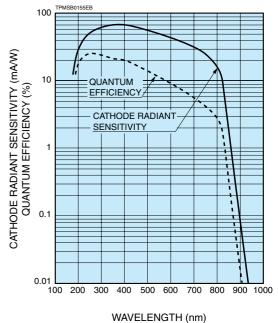
PHOTOMULTIPLIER TUBE R2949

(Low Dark Counts Type of R928)

FEATURES

●Low dark counts	250 s ⁻¹ (at 25 °C)
●Low dark current 2 nA (after 30 mi	n storage in darkness)
●Wide spectral response	. 185 nm to 900 nm
●High cathode sensitivity	
Luminous	200 μ A/lm
Radiant at 400 nm	68 mA/W
●High anode sensitivity	
Luminous	2000 A/Im
Radiant at 400 nm	6.8×10^5 A/W

APPLICATIONS


- ●Bio fluorescence detection
- ●Laser scanning microscope
- Spectroscopy
- Environmental monitoring Air monitoring
- Blood inspection
- Photometers

SPECIFICATIONS

GENERAL

Pa	arameter	Description / Value	Unit
Spectral respo	nse	185 to 900	nm
Wavelength of	maximum response	400	nm
Photocathode	Material	Multialkali	_
Filolocalilode	Minimum effective area	8×6	mm
Window mater	al	UV glass	_
Dynodo	Structure	Circular-cage	_
Dynode	Number of stages	9	_
Direct	Anode to last dynode	Approx. 4	рF
interelectrode	Anode to all other	Approx. 6	pF
capacitances	electrodes	Арргох. о	ρι
Base		11-pin base	_
Weight		Approx. 46	g
Operating amb	ient temperature	-30 to +50	°C
Storage tempe	rature	-30 to +50	°C
Suitable socke	t	E678–11A (sold separately)	_
Suitable socke	t assembly	E717–63 (sold separately)	_

Figure 1: Typical spectral response

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2016 Hamamatsu Photonics K.K.

PHOTOMULTIPLIER TUBE R2949

MAXIMUM RATINGS (Absolute maximum values)

	Parameter	Value	Unit
I Supply voltage	Between anode and cathode	1250	V
	Between anode and last dynode	250	V
Average anode current ®		0.1	mA

CHARACTERISTICS (at 25 °C)

	Parameter		Min.	Тур.	Max.	Unit
	Quantum efficiency	at 260 nm	_	25	_	%
	Luminous ®		140	200	_	μ A /lm
		at 194 nm	_	18	_	mA/W
		at 254 nm	_	52		
Cathode sensitivity	Radiant	at 400 nm	140			
		at 633 nm	_	41	_	% μA/Im mA/W mA/W mA/W mA/W mA/W A/Im A/W
		at 852 nm	_	3.5	_	
	Red / White ratio ©		0.1	0.3	_	
	Blue sensitivity inde	ex [®]	_	7.5	_	_
	Luminous [©]		1000	2000	_	A/Im
		at 194 nm	_	1.8×10^{5}	_	A/W
Anada canaitivity		at 254 nm	_	5.2×10^{5}	5 — A/W 5 — A/W 5 — A/W 5 — A/W	
Arioue sensitivity	Radiant	at 400 nm	_	6.8×10^{5}	_	% μA/Im mA/W mA/W mA/W mA/W mA/W mA/W — — — A/Im A/W A/W A/W A/W A/W A/W A/W MA/W MA
		at 633 nm	_	4.1 × 10 ⁵	_	
		at 852 nm	_	3.5×10^{4}	_	
Gain [©]			_	1.0×10^{7}	_	_
Anode dark count [©]		at +25 °C	_	250	750	s ⁻¹
Anode dark current ©	After 30 min storage in	darkness)	_	2	25	nA
ENI (Equivalent Noise Input) (H			1.2 × 10 ⁻¹⁶	_	W	
Anada nulaa riga tim		ne ①	<u> </u>	2.2	_	ns
Anode sensitivity Gain Anode dark count Anode dark current Anode dark current	Electron transit time	U	_	22	_	ns

NOTES

- Averaged over any interval of 30 seconds maximum.
- ® The light source is a tungsten filament lamp operated at a distribution temperature of 2856 K. Supply voltage is 100 V between the cathode and all other electrodes connected together as anode.
- © Red/White ratio is the quotient of the cathode current measured using a red filter (Toshiba R-68) interposed between the light source and the tube by the cathode current measured with the filter removed under the same conditions as Note ®.
- ① The value is cathode output current when a blue filter (Corning CS 5-58 polished to 1/2 stock thickness) is interposed between the light source and the tube under the same condition as Note (B).
- Measured with the same light source as Note
 and with the voltage distribution ratio shown in Table 1.

Table 1: Voltage distribution ratio

	-																	
Electrode	k	(Dy ²	D	y 2	Dy3	Dy	/4	Dy	/5	Dy6	D	у7	D	y8	D	y 9	Р
Distribution ratio		1		1		1	1	1	1		1	1		1		1	1	

Supply voltage: 1000 V, K: Cathode, Dy: Dynode, P: Anode

F Measured at the plateau voltage.

Table 2: Voltage distribution ratio for plateau test

Electrodes	K	D	y1	Dy	2 [Эу3	Dy	4	Dy5	D	у6	Dy	7	Dy8	Dy	у9	F	,
Distribution ratio		1		1	1		1	1		1	-	1	1		2	1		

Supply voltage: Plateau voltage, K: Cathode, Dy: Dynode, P: Anode

- © Measured with the same supply voltage and voltage distribution ratio shown in Table 1.
- HENI is an indication of the photon-limited signal-to-noise ratio. It refers to the amount of light in watts to produce a signal-to-noise ratio of unity in the output of a photomultiplier tube.

$$ENI = \frac{\sqrt{2q \cdot Idb \cdot G \cdot \Delta f}}{S}$$

where $q = Electronic charge (1.60 \times 10^{-19} coulomb)$.

ldb = Anode dark current (after 30 minute storage) in amperes.

G = Gain.

 Δf = Bandwidth of the system in hertz. 1 hertz is used.

S = Anode radiant sensitivity in amperes per watt at the wavelength of peak response.

- The rise time is the time for the output pulse to rise from 10 % to 90 % of the peak amplitude when the entire photocathode is illuminated by a delta function light pulse.
- The electron transit time is the interval between the arrival of delta function light pulse at the entrance window of the tube and the time when the anode output reaches the peak amplitude. In measurement, the whole photocathode is illuminated.

Figure 2: Anode luminous sensitivity and gain characteristics

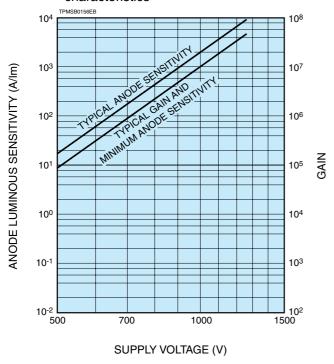


Figure 4: Typical temperature coefficient of anode sensitivity

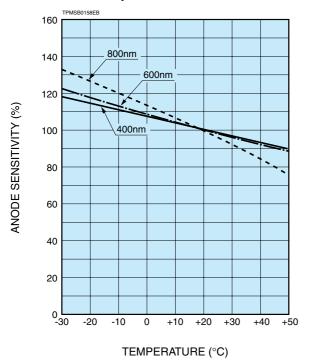
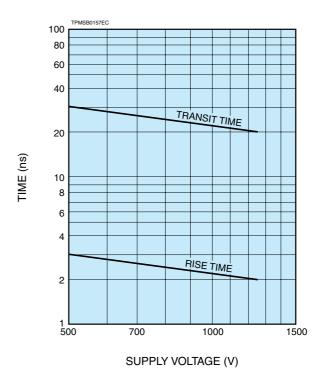
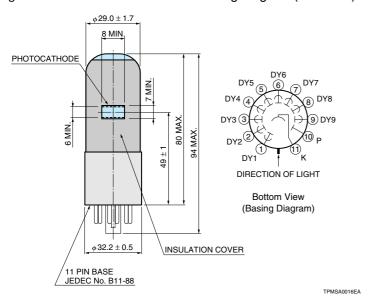




Figure 3: Typical time response

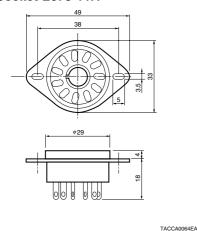
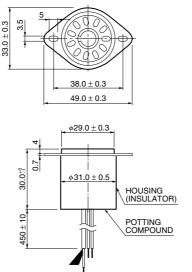
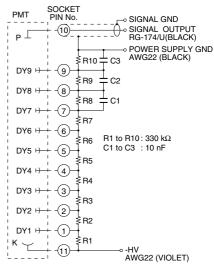

PHOTOMULTIPLIER TUBE R2949

Figure 5: Dimensional outline and basing diagram (Unit: mm)




Sold separately Figure 6: Accessories (Unit: mm)

Socket E678-11A

D type socket assembly E717-63

Warning-Personal Safety Hazards

Electrical Shock-Operating voltages applied to this device present a shock hazard.

HAMAMATSU PHOTONICS K.K. www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Division 314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan, Telephone: (81)539/62-5248, Fax: (81)539/62-2205

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater. N.J. 0807-0910, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com
Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-2558 E-mail: info@hamamatsu.de
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33) 1 69 53 71 10 F-mail: info@hamamatsu.dr
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Herffordshire ALT TBW, United Kingdom, Telephone: (49)8152-3757 E-mail: info@hamamatsu.dr
United Kingdom: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 SE-164 40 Kista, Sweden, Telephone: (49)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se
Italy: Hamamatsu Photonics (Italia S.r.l.: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (49)81-509-031-00, China; Telephone: (46)8-509-031-00 E-mail: info@hamamatsu.se

TPMS1095E01
Talwan: Hamamatsu Photonics Taiwan Co., Ltd.: 8F-3, No.158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (886)03-659-0080, Fax: (886)07-811-7238 E-mail: info@wh.phx.co.jp

JUL. 2016 IP

^{*} Hamamatsu also provides C4900 series compact high voltage power supplies and C12597-01, C8991 DP type socket assemblies which incorporate a DC to DC converter type high voltage power supply.