HAMAMATSU

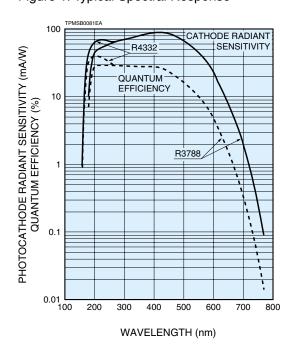
R3788, R4332

High Sensitivity, Bialkali Photocathode 28 mm (1-1/8 Inch) Diameter, 9-Stage, Side-On Type

FEATURES

FEATURES	
●Wide Spectral Response	
R3788 18	85 nm to 750 nm
R4332 16	60 nm to 750 nm
●High Cathode Sensitivity	
Luminous	. 120 μA/lm Typ.
Radiant at 420 nm	90 mA/W Typ.
Quantum Efficiency at 210 nm 40) % Typ. (R4332)
●High Anode Sensitivity (at 1000 V)	
Luminous	1200 A/Im Typ.
Radiant at 420 nm 9.	0×10^5 A/W Typ.

APPLICATIONS


- •Fluorescence Spectrophotometers
- **•**Emission Spectrophotometers
- Atomic Absorption Spectrophotometers

SPECIFICATIONS

GENERAL

Pa	arameter	Description/Value	Unit
Spectral	R3788	185 to 750	nm
Response	R4332	160 to 750	nm
Wavelength of	Maximum Response	420	nm
Photocathode Material		Bialkali	
Filolocalilode	Minimum Effective Area	8 × 24	mm
Window	R3788	UV glass	_
Material	R4332	Fused silica	_
	Secondary Emitting Surface	Bialkali	_
Dynode	Structure	Circular-cage	_
	Number of Stages	9	_
Direct Interelectrode	Anode to Last Dynode	4	pF
Capacitances	Anode to All Other Electrodes	6	pF
Base		11-pin base JEDEC No. B11-88	_
Weight		Approx. 45	g
Operating Amb	ient Temperature	-30 to +50	°C
Storage Tempe	rature	-30 to +50	°C
Suitable Socke	t	E678–11A (Sold Separately)	
Suitable Socke	t Accombly	E717–63 (Sold Separately)	
Suitable Socke	IL ASSETTIBLY	E717–74 (Sold Separately)	_

Figure 1: Typical Spectral Response

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2006 Hamamatsu Photonics K.K.

PHOTOMULTIPLIER TUBES R3788, R4332

MAXIMUM RATINGS (Absolute Maximum Values)

	Parameter	Value	Unit
Supply Voltage	Between Anode and Cathode	1250	V
Supply Voltage	Between Anode and Last Dynode	250	V
Average Anode Current ^A		0.1	mA

CHARACTERISTICS (at 25 °C)

		R3788			Unit				
Parameter				Min. Typ.		Min.	Тур.	Max.	Unit
	Quantum Efficien (at Peak Waveler	,	_	30 (at 250 nm)	_	_	40 (at 210 nm)	_	%
	Luminous B		100	120	_	100	120	_	μ A /lm
Cathode Sensitivity		at 194 nm	_	_ 31			60	_	mA/W
Callibue Sensitivity	Radiant	at 210 nm	_	50	_	_	68	_	mA/W
		at 420 nm	_	90	_	_	90	_	mA/W
	Red/White Ratio	C	_	0.01	_	_	0.01	_	_
	Blue Sensitivity In	ndex ^D	_	10	_	_	10	_	_
	Luminous ^E	500	1200	_	500	1200	_	A/lm	
Anada Canaitivity		at 194 nm	_	3.1×10^{5}	_	_	6.0×10^{5}	_	A/W
Anode Sensitivity	Radiant	at 210 nm	_	5.0×10^{5}	_	_	6.8×10^{5}	_	A/W
		at 420 nm	_	9.0×10^{5}	_	_	9.0×10^{5}	_	A/W
Gain ^E	Gain ^E				_	_	1.0×10^{7}	_	_
Anode Dark Current F	Anode Dark Current F (After 30 min Storage in Darkness)				50	_	5	50	nA
ENI (Equivalent Noise	ENI (Equivalent Noise Input) ^G			1.4×10^{-16}	_	_	1.4×10^{-16}	_	W
Time Response ^E	Anode Pulse Rise	_	2.2	_	_	2.2	_	ns	
	Electron Transit T	_	22	_		22	_	ns	
	Transit Time Spre	_	1.2	_	_	1.2	_	ns	
Anada Current Stability K	Light Hysteresis	_	0.1	_	_	0.1	_	%	
Anode Current Stability K	Voltage Hysteres	_	1.0	_	_	1.0	_	%	

NOTES

- A: Averaged over any interval of 30 seconds maximum.
- B: The light source is a tungsten filament lamp operated at a distribution temperature of 2856K. Supply voltage is 100 V between the cathode and all other electrodes connected together as anode.
- C: Red/White ratio is the quotient of the cathode current measured using a red filter (Toshiba R-68) interposed between the light source and the tube by the cathode current measured with the filter removed under the same conditions as Note B.
- D:The value is cathode output current when a blue filter (Corning CS 5-58 polished to 1/2 stock thickness) is interposed between the light source and the tube under the same condition as Note B.
- E: Measured with the same light source as Note B and with the voltage distribution ratio shown in Table 1 below.

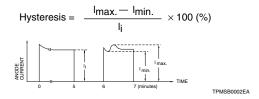
Table 1: Voltage Distribution Ratio

				Т																
Electrodes	ŀ	(Dy	1	Dy2	Dy	/3	Dy	/4	Dy	5 C)y6	D	y7	Dy	8	D۱	/9		Р
	Ь-т			_		_	_	_				_	Ь,	_	_		щ	_		_
Distribution		1		1		4		4 I			1		1		4 I		4 I		1	
Ratio				_ '		٠.		٠.			_ '		٠		'		٠.		٠	
Supply Voltage: 1000 V, K: Cathode, Dy: Dynode, P: Anode																				
Supply voltage. 1000 v, K. Cathode, Dy. Dyhode, F. Ahode																				

- F: Measured with the same supply voltage and voltage distribution ratio as Note E after removal of light.
- G:ENI is an indication of the photon-limited signal-to-noise ratio. It refers to the amount of light in watts to produce a signal-to-noise ratio of unity in the output of a photomultiplier tube.

$$ENI = \frac{\sqrt{2q \cdot ldb \cdot G \cdot \Delta f}}{e}$$

where $q = Electronic charge (1.60 \times 10^{-19} coulomb)$.


Idb = Anode dark current(after 30 minutes storage) in amperes.

G = Gain.

 Δf = Bandwidth of the system in hertz. 1 hertz is used.

S = Anode radiant sensitivity in amperes per watt at the wavelength of peak response.

- H:The rise time is the time for the output pulse to rise from 10 % to 90 % of the peak amplitude when the entire photocathode is illuminated by a delta function light pulse.
- I: The electron transit time is the interval between the arrival of delta function light pulse at the entrance window of the tube and the time when the anode output reaches the peak amplitude. In measurement, the whole photocathode is illuminated.
- J: Also called transit time jitter. This is the fluctuation in electron transit time between individual pulses in the signal photoelectron mode, and may be defined as the FWHM of the frequency distribution of electron transit times.
- K: Hysteresis is temporary instability in anode current after light and voltage are applied.

(1)Light Hysteresis

The tube is operated at 750 V with an anode current of 1 μ A for 5 minutes. The light is then removed from the tube for a minute. The tube is then re-illuminated by the previous light level for a minute to measure the variation.

(2) Voltage Hysteresis

The tube is operated at 300 V with an anode current of 0.1 μ A for 5 minutes. The light is then removed from the tube and the supply voltage is quickly increased to 800 V. After a minute, the supply voltage is then reduced to the previous value and the tube is re-illuminated for a minute to measure the variation.

HAMAMATSU

Figure 2: Anode Luminous Sensitivity and Gain Characteristics

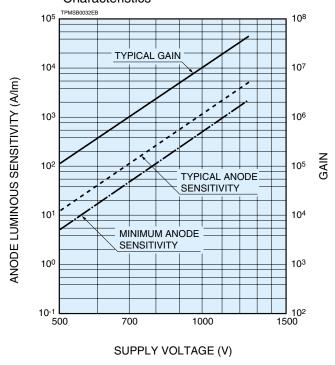


Figure 3: Typical Time Response

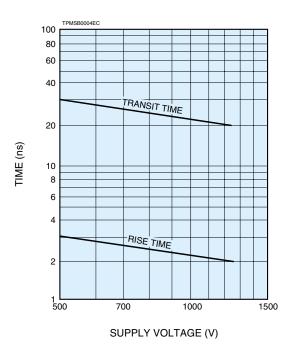


Figure 4: Typical ENI with Wavelength

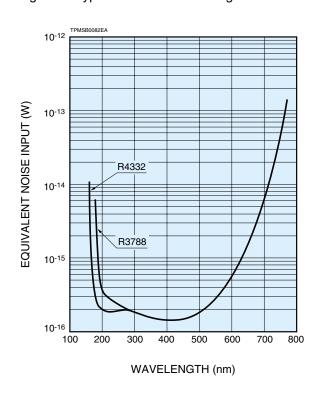
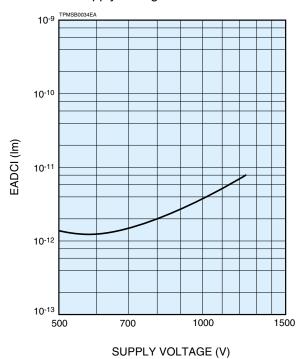



Figure 5: Typical EADCI (Equivalent Anode Dark Current Input) vs. Supply Voltage

PHOTOMULTIPLIER TUBES R3788, R4332

Figure 6: Dimensional Outline and Basing Diagram (Unit: mm)

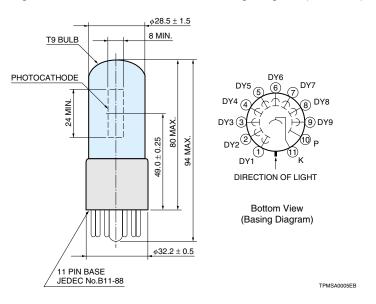
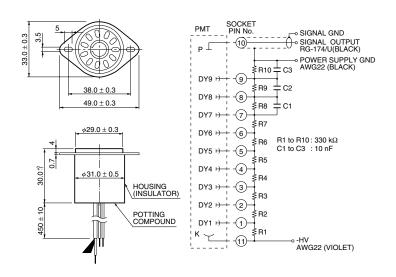



Figure 7: Socket (Unit: mm) Sold Separately


E678-11A

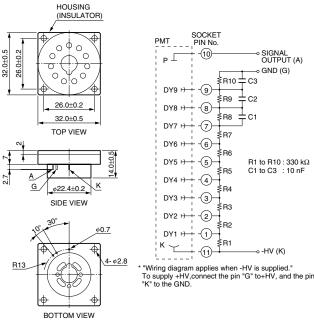

TACCA0064EA

Figure 8: D Type Socket Assembly (Unit: mm) Sold Separately

E717-63

E717-74

TACCA0002EH

Warning-Personal Safety Hazards

TACCA0277EA

Electrical Shock–Operating voltages applied to this device present a shock hazard.

HAMAMATSU

WEB SITE www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Division

314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan, Telephone: (81)539/62-5248, Fax: (81)539/62-2205

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P. O. Box 6910, Bridgewater. N.J. 08807-0910, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com
Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany. Telephone: (49)8152-2575-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: info@hamamatsu.fr
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road Welwyn Garden City Hertfordshire AL7 18W, United Kingdom, Telephone: 44-(0)1707-294888, Fax: 44(0)1707-325777 E-mail: info@hamamatsu.co.uk
North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 12, SE-171-41 SOLNA, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se
Italy: Hamamatsu Photonics Italia: S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39)02-935 81 733, Fax: (39)02-935 81 741 E-mail: info@hamamatsu.it

TPMS1021E02
JUL. 2006. IP

^{*} Hamamatsu also provides C4900 series compact high voltage power supplies and C6270 series DP type socket assemblies which incorporate a DC to DC converter type high voltage power supply.