HAMAMATSU

PHOTOMULTIPLIER TUBES R7518 R7518P (For Photon Counting)

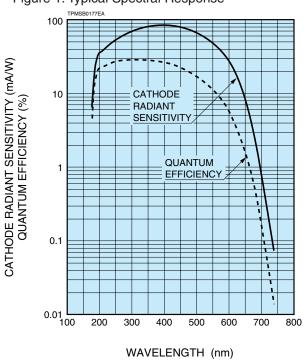
High Sensitivity with Low Noise Photocathode

FEATURES

185 nm to 730 nm
130 μ A/lm
85 mA/W
1560 A/lm
10.2 × 10 ⁵ A/W
0.2 nA
10 s ⁻¹

APPLICATIONS

- **OChemiluminescence Detection**
- **●**Bioluminescence Detection
- •Fluorescence Spectrometer
- ●SO₂ Monitor (UV Fluorescence)



SPECIFICATIONS

GENERAL

Parameter	Description / Value	Unit
Spectral Response	185 to 730	nm
Wavelength of Maximum Response	410	nm
Photocathode		
Material	Low noise bialkali	_
Minimum Effective Area	8 × 24	mm
Window Material	UV glass	_
Dynode		
Secondary Emitting Surface	Low noise bialkali	_
Structure	Circular-cage	_
Number of Stages	9	_
Direct Interelectrode Capacitances		
Anode to Last Dynode	4	pF
Anode to All Other Electrode	6	pF
Base	11-pin base	
Dase	JEDEC No. B11-88	_
Weight	45	g
Operating Ambient Temperature	-30 to +50	°C
Storage Temperature	-30 to +50	°C
Suitable Socket	E678–11A (Sold Separately)	_
Suitable Socket Assembly	E717-63 (Sold Separately)	
Suitable Socket Assembly	E717-74 (Sold Separately)	

Figure 1: Typical Spectral Response

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are

subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2010 Hamamatsu Photonics K.K.

PHOTOMULTIPLIER TUBES R7518, R7518P (For Photon Counting)

MAXIMUM RATINGS (Absolute Maximum Values)

Parameter	Value	Unit
Supply Voltage		
Between Anode and Cathode	1250	V
Between Anode and Last Dynode	250	V
Average Anode Current (A)	0.1	mA

CHARACTERISTICS (at 25 °C)	for G	R7518 Seneral Purp	oose	for P	R7518P hoton Cour		
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Cathode Sensitivity							
Quantum Efficiency (at peak wavelength)	_	29	_	_	29	_	%
Luminous ®	120	130	_	120	130	_	μ A /lm
Radiant (at peak wavelength)	_	85	_	_	85	_	mA/W
Blue Sensitivity Index (CS 5-58)	_	10	_	_	10	_	_
Anode Sensitivity							
Luminous ©	1200	1560	_	1200	1560	_	A/lm
Radiant at 400 nm	_	10.2×10^5	_	_	10.2×10^{5}	_	A/W
Gain [®]	_	1.2×10^{7}	_	_	1.2×10^{7}	_	_
Anode Dark Current [©]							
After 30 min Storage in darkness	_	0.2	2.0	_	0.2	0.5	nA
Anode Dark Counts [©]	_	_	_	_	10	50	S ⁻¹
ENI (Equivalent Noise Input) ^(F)	_	2.7×10^{-17}	_	_	2.7×10^{-17}	_	W
Time Response [®]							
Anode Pulse Rise Time [©]	_	2.2	_	_	2.2	_	ns
Electron Transit Time	_	22	_	_	22	_	ns
Transit Time Spread (TTS) [⊕]	_	1.2	_	_	1.2	_	ns
Anode Current Stability ^①							
Light Hysteresis	_	0.1	_	_	0.1	_	%
Voltage Hysteresis	_	1.0		_	1.0		%

NOTES

- A: Averaged over any interval of 30 seconds maximum.
- B: The light source is a tungsten filament lamp operated at a distribution temperature of 2856 K. Supply voltage is 150 V between the cathode and all other electrodes connected together as anode.
- C: Measured with the same light source as Note B and with the anode-tocathode supply voltage and voltage distribution ratio shown in Table 1 below
- D:Measured with the same supply voltage and voltage distribution ratio as Note E after removal of light.
- E: Measured at the plateau voltage.
- F: ENI is an indication of the photon-limited signal-to-noise ratio. It refers to the amount of light in watts to produce a signal-to-noise ratio of unity in the output of a photomultiplier tube.

$$ENI = \frac{\sqrt{2q \cdot Idb \cdot G \cdot f}}{S} \quad (W$$

where $q = Electronic charge. (1.60 \times 10^{-19} coulomb)$

ldb = Anode dark current(after 30 minute storage) in amperes.

G = Gair

- f = Bandwidth of the system in hertz. (usually 1 hertz)
- S = Anode radiant sensitivity in amperes per watt at the wavelength of peak response
- G:The rise time is the time for the output pulse to rise from 10% to 90% of the peak amplitude when the entire photocathode is illuminated by a delta function light pulse.
- H:The electron transit time is the interval between the arrival of delta function light pulse at the entrance window of the tube and the time when the anode output reaches the peak amplitude. In measurement, the whole photocathode is illuminated.
- J: Also called transit time jitter. This is the fluctuation in electron transit time between individual pulses in the signal photoelectron mode, and may be defined as the FWHM of the frequency distribution of electron transit times.

K: Hysteresis is temporary instability in anode current after light and voltage are applied.

$$Hysteresis = \frac{Imax. - Imin.}{I_i} \times 100 (\%)$$

$$\frac{I_i}{I_i} = \frac{I_i}{I_i} = \frac{I_i}{I_$$

(1)Current Hysteresis

The tube is operated at 750 V with an anode current of 1 μ A for 5 minutes. The light is then removed from the tube for a minute. The tube is then re-illuminated by the previous light level for a minute to measure the variation. (2)Voltage Hysteresis

The tube is operated at 300 V with an anode current of 0.1 μ A for 5 minutes. The light is then removed from the tube and the supply voltage is quickly increased to 800 V. After a minute, the supply voltage is then reduced to the previous value and the tube is re-illuminated for a minute to measure the variation.

Table 1:Voltage Distribution Ratio

Electrodes	k	([)y1	Dy	2 [Эу3	Dy	y4	Dy	/5	Dye	D	у7	Dy	у8	D	у9		Р
Distribution Ratio		1		1	1		1		1	1		1		1		1		1	

Supply Voltage: 1000 V, K: Cathode, Dy: Dynode, P: Anode

HAMAMATSU

Figure 2: Typical Gain and Anode Dark Current

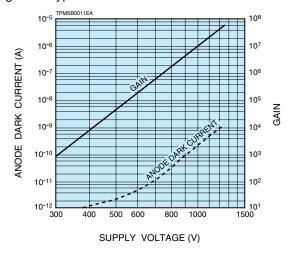


Figure 4: Typical ENI vs. Wavelength

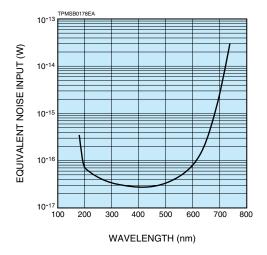


Figure 6: Typical Plateau Data for R7518

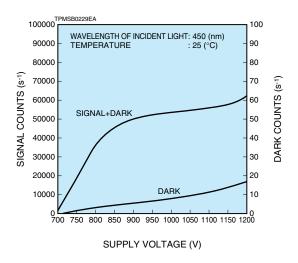


Figure 3: Typical Time Response

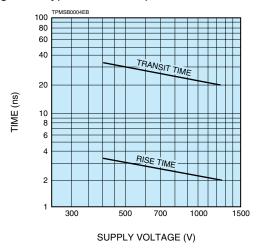
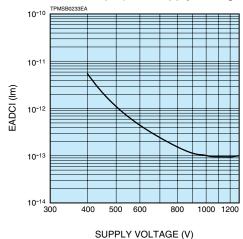
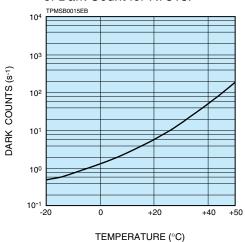




Figure 5: Typical EADCI (Equivalent Anode Dark Current Input) vs. Supply Voltage

Data shown here, which is given from a relation among supply voltage, anode sensitivity and dark current, serves as a good reference in order to determine the most suitable supply voltage or its range.

Figure 7: Typical Temperature Characteristics of Dark Count for R7518P

PHOTOMULTIPLIER TUBES R7518, R7518P (For Photon Counting)

Figure 7: Dimensional Outline and Basing Diagram (Unit: mm)

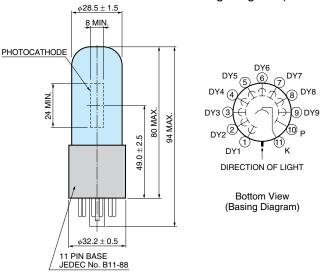


Figure 8: Socket E678-11A (Sold Separately)

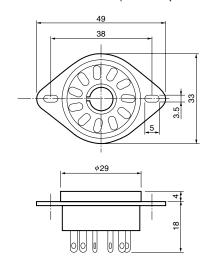


Figure 9: D Type Socket Assembly E717-63 (Sold Separately)

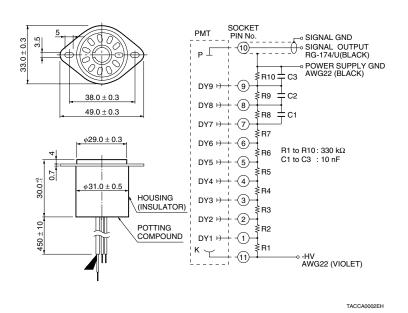
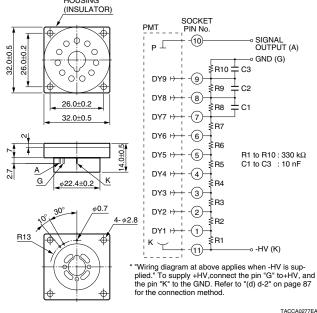



Figure 10: D Type Socket Assembly E717-74 (Sold Separately)

* Hamamatsu also provides C4900 series compact high voltage power supplies and C6270 series DP type socket assemblies which incorporate a DC to DC converter type high voltage power supply.

Warning-Personal Safety Hazards

Electrical Shock-Operating voltages applied to this device present a shock hazard.

WEB SITE www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Division

314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan, Telephone: (81)539/62-5248, Fax: (81)539/62-2205

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P. O. Box 6910, Bridgewater. N.J. 08807-0910, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: info@hamamatsu.fr United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road Welvyn Garden City Hertfordshire AL7 1BW, United Kingdom, Telephone: 44-(0)1707-294888, Fax: 44(0)1707-325777 E-mail: info@hamamatsu.co.uk North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 12, SE-171-41 SOLNA, Sweden, Telephone: (46)8-509-031-01 E-mail: info@hamamatsu.se TPMS1060E03 Italy: Hamamatsu Photonics Italia: S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39)02-935 81 733, Fax: (39)02-935 81 741 E-mail: info@hamamatsu.it MAY 2010. IP