

The second second second

CCD image sensors

S11511 series

Enhanced near infrared sensitivity, Constant element temperature control

The S11511 series is a family of FFT (full frame transfer)-CCD image sensors for photometric applications that offer improved sensitivity in the near infrared region at wavelengths longer than 800 nm. Our unique technology in laser processing was used to form a MEMS structure on the back side of the CCD. This allows the S11510 series to have much higher sensitivity than our previous products (S11850 series).

In addition to having high infrared sensitivity, the S11510 series can be used as an image sensor with a long active area in the direction of the sensor height by binning operation, making it suitable for detectors in Raman spectroscopy. Binning operation also ensures even higher S/N and signal processing speed compared to methods that use an external circuit to add signals digitally. In addition, a TE-cooler is built into the package to keep the element temperature constant (approx. 5 °C) during operation.

The S11511 series has a pixel size of $14 \times 14 \,\mu$ m and is available in two image areas of $14.336 (H) \times 0.896 (V) \,mm (1024 \times 64 pixels)$ and 28.672 (H) $\times 0.896 (V) \,mm (2048 \times 64 pixels)$. The S11511 series is pin compatible with the S11850-1106, and so operates under the same drive conditions.

Features

- NIR high sensitivity: QE=40% (λ=1000 nm)
- One-stage TE-cooled type (element temperature: approx. 5 °C)
- High CCD node sensitivity: 6.5 μV/e⁻
- High full well capacity, wide dynamic range (with anti-blooming function)
- Pixel size: 14 × 14 μm
- MPP operation

Spectral response (without window)*1

*1: Spectral response with quartz glass is decreased according to the spectral transmittance characteristic of window material.

www.hamamatsu.com

Raman spectrometers, etc.

Applications

Structure

Parameter	S11511-1006	S11511-1106	Unit		
Image size (H \times V)	14.336 × 0.896	28.672 × 0.896	mm		
Pixel size (H \times V)	14 × 14				
Number of total pixels	1044 × 70	2068 × 70	-		
Numbe of effective pixels	1024 × 64	2048 × 64	-		
Vertical clock phase	2-phase				
Horizontal clock phase	4-phase				
Output circuit	One-stage MOSFET source follower				
Package	28-pin ceramic DIP (refer to dimensional outline)				
Window	Quartz glass*2				

*2: Hermetic sealing

Absolute maximum ratings (Ta=25 °C, unless otherwise noted)

•		,				
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating temperature* ³	Topr		-50	-	+50	°C
Storage temperature	Tstg		-50	-	+70	°C
Output transistor drain voltage	Vod		-0.5	-	+30	V
Reset drain voltage	Vrd		-0.5	-	+18	V
Overflow drain voltage	VOFD		-0.5	-	+18	V
Vertical input source voltage	VISV		-0.5	-	+18	V
Horizontal input source voltage	VISH		-0.5	-	+18	V
Overflow gate voltage	Vofg		-10	-	+15	V
Vertical input gate voltage	VIG1V, VIG2V		-10	-	+15	V
Horizontal input gate voltage	VIG1H, VIG2H		-10	-	+15	V
Summing gate voltage	Vsg		-10	-	+15	V
Output gate voltage	Vog		-10	-	+15	V
Reset gate voltage	Vrg		-10	-	+15	V
Transfer gate voltage	Vtg		-10	-	+15	V
Vertical shift register clock voltage	VP1V, VP2V		-10	-	+15	V
Horizontal shift register clock voltage	Vp1н, Vp2н Vp3н, Vp4н		-10	-	+15	V
TE-cooler maximum current*4 *5	Imax	Tc*6=Th*7=25 °C	-	1.8	-	A
TE-cooler maximum voltage	Vmax	Tc*6=Th*7=25 °C	-	3.5	-	V
Thermistor power dissipation	Pd_th		-	-	100	mW

*3: Chip temperature

*4: If the current greater than this value flows into the thermoelectric cooler, the heat absorption begins to decrease due to the Joule heat. It should be noted that this value is not the damage threshold value. To protect the thermoelectric cooler and maintain stable operation, the supply current should be less than 60% of this maximum current.

*5: To ensure stable temperature control, ΔT (temperature difference between Th and Tc) should be less than 30 °C. If ΔT exceeds 30 °C, product characteristics may deteriorate. For example, the dark current uniformity may degrade.

*6: Temperature of the cooling side of thermoelectric cooler

*7: Temperature of the heat radiating side of thermoelectric cooler

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Operating conditions (MPP mode, Ta=25 °C)

Pa	arameter		Symbol	Min.	Тур.	Max.	Unit
Output transistor drain voltage		Vod	23	24	25	V	
Reset drain voltage	9		Vrd	11	12	13	V
Overflow drain volt	age		VOFD	11	12	13	V
	Input source		VISV, VISH	-	Vrd	-	V
Test point	Vertical input gate		VIG1V, VIG2V	-9	-8	-	V
	Horizontal input ga		VIG1H, VIG2H	-9	-8	-	V
Overflow gate volta	age		VOFG	0	12	13	V
Cumming gate valt		High	VSGH	4	6	8	V
Summing gate volt	age	Low	VSGL	-6	-5	-4	v
Output gate voltag	е		Vog	4	5	6	V
Reset gate voltage		High	VRGH	4	6	8	V
		Low	VRGL	-6	-5	-4	
Transfer asta valta as		High	Vtgh	4	6	8	V
Transfer gate volta	ye	Low	Vtgl	-9	-8	-7	V
Vortical chift regist	or clock voltage	High	VP1VH, VP2VH	4	6	8	V
Vertical shift regist	er clock voltage	Low	VP1VL, VP2VL	-9	-8	-7	v
Horizontal shift register clock voltage - L		High	VP1HH, VP2HH	4	6	8	
			Vрзнн, Vр4нн		0	0	V
		Low	VP1HL, VP2HL	-6	-5	-4	
			VP3HL, VP4HL	•	_	•	
Substrate voltage			Vss	-	0	-	V
External load resist	tance		RL	90	100	110	kΩ

Electrical characteristics (Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Signal output frequency*8		fc	-	0.25	0.5	MHz
Vortical shift register capacitance	-1006	CP1V, CP2V		600		pF
Vertical shift register capacitance	-1106	CPIV, CPZV	-	1200		
Harizantal shift register canacitance	-1006	Ср1н, Ср2н		80		рĘ
Horizontal shift register capacitance	-1106	Срзн, Ср4н	-	160	-	pF
Summing gate capacitance		Csg	-	10	-	pF
Reset gate capacitance		Crg	-	10	-	pF
Transfer gate capacitance	-1006	(TG	;	30		nE
Transfer gate capacitance	-1106			60		pF
Charge transfer efficiency*9		CTE	0.99995	0.99999	-	-
DC output level ^{*8}		Vout	17	18	19	V
Output impedance*8		Zo	-	10	-	kΩ
Power consumption*8 *10		Р	-	4	-	mW

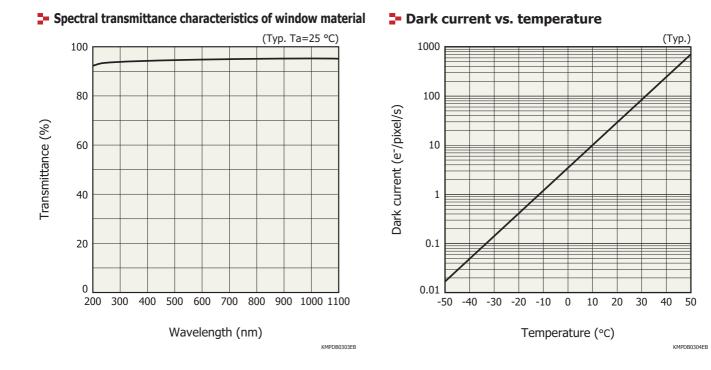
*8: The values depend on the load resistance. (VoD=24 V, RL=100 k Ω) *9: Charge transfer efficiency per pixel, measured at half of the full well capacity

*10: Power consumption of the on-chip amplifier plus load resistance

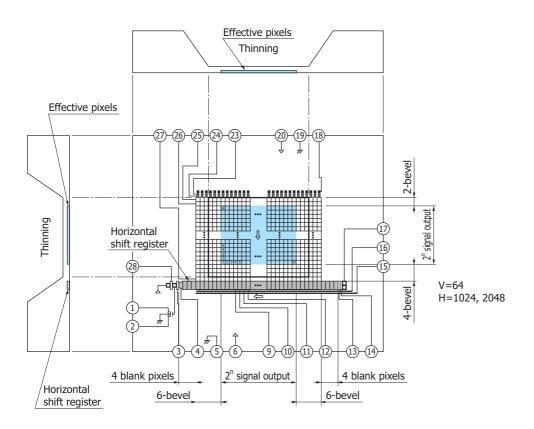
Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

F	Parameter	Symbol	Min.	Тур.	Max.	Unit
Saturation output	voltage	Vsat	-	$Fw \times Sv$	-	V
	Vertical	Ew.	50	60	-	ke ⁻
Full well capacity	Horizontal	Fw	250	300	-	
CCD node sensitiv	ity* ¹¹	Sv	5.5	6.5	7.5	µV/e⁻
Dark current*12		DS	-	50	500	e-/pixel/s
Readout noise*13		Nr	-	6	15	e⁻ rms
Dynamic range*14	Line binning	DR	41700	50000	-	-
Spectral response	range	λ	-	200 to 1100	-	nm
Photoresponse no	nuniformity* ¹⁵	PRNU	-	±3	±10	%

*11: The values depend on the load resistance. (VoD=24 V, RL=100 k Ω)

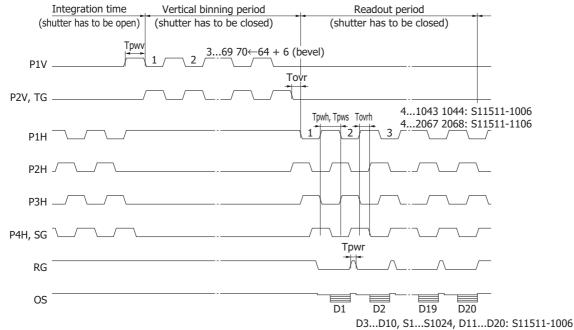

*12: Dark current is reduced to half for every 5 to 7 °C decrease in temperature.

*13: Td=-40 °C, fc=20 kHz


*14: Dynamic range = Full well capacity / Readout noise

*15: Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 660 nm)

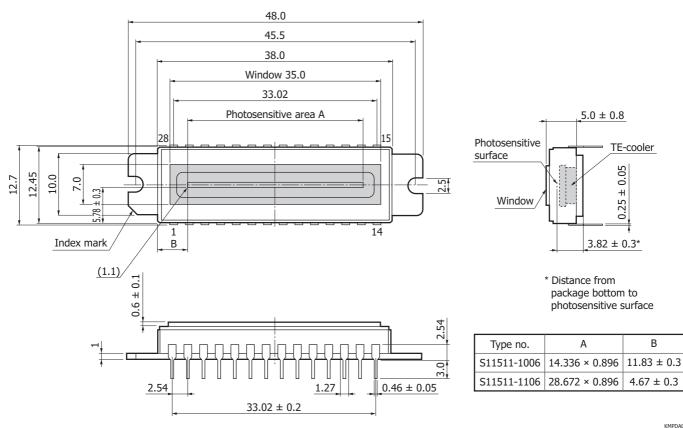
Photoresponse nonuniformity = $\frac{\text{Fixed pattern noise (peak to peak)}}{\text{Signal}} \times 100 [\%]$


Device structure (conceptual drawing of top view in dimensional outline)

Note: When viewed from the direction of the incident light, the horizontal shift register is covered with a thick silicon layer (dead layer). However, long-wavelength light passes through the silicon dead layer and may possibly be detected by the horizontal shift register. To prevent this, provide light shield on that area as needed.

KMPDC0596EA

Timing chart (line binning)



S1...S2048 : S11511-1106

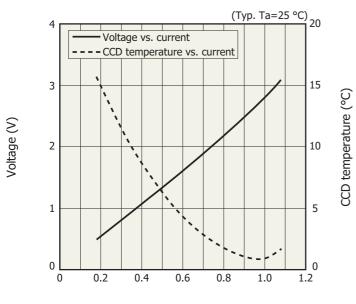
Parameter		Symbol	Min.	Тур.	Max.	Unit
	Pulse width*16	Tpwv	6	8	-	μs
P1V, P2V, TG	Rise and fall times*16	Tprv, Tpfv	20	-	-	ns
	Pulse width*16	Tpwh	1000	2000	-	ns
	Rise and fall times*16	Tprh, Tpfh	10	-	-	ns
P1H, P2H, P3H, P4H	Pulse overlap time	Tovrh	500	1000	-	ns
	Duty ratio*16	-	40	50	60	%
	Pulse width*16	Tpws	1000	2000	-	ns
50	Rise and fall times*16	Tprs, Tpfs	10	-	-	ns
SG	Pulse overlap time	Tovrh	500	1000	-	ns
	Duty ratio*16	-	40	50	60	%
RG	Pulse width	Tpwr	100	1000	-	ns
KG	Rise and fall times	Tprr, Tpfr	5	-	-	ns
TG-P1H	Overlap time	Tovr	1	2	-	μs

*16: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

Dimensional outline (unit: mm, tolerance unless otherwise noted: ±0.15)

KMPDA0340EA

В


Pin connections

Pin no.	Symbol	Function	Remark (standard operation)
1	OS	Output transistor source	RL=100 kΩ
2	OD	Output transistor drain	+24 V
3	OG	Output gate	+5 V
4	SG	Summing gate	Same pulse as P4H
5	SS	Substrate	GND
6	RD	Reset drain	+12 V
7	Th1	Thermistor	
8	P-	TE-cooler-	
9	P4H	CCD horizontal register clock-4	
10	P3H	CCD horizontal register clock-3	
11	P2H	CCD horizontal register clock-2	
12	P1H	CCD horizontal register clock-1	
13	IG2H	Test point (horizontal input gate-2)	-8 V
14	IG1H	Test point (horizontal input gate-1)	-8 V
15	OFG	Overflow gate	+12 V
16	OFD	Overflow drain	+12 V
17	ISH	Test point (horizontal input source)	Connect to RD
18	ISV	Test point (vertical input source)	Connect to RD
19	SS	Substrate	GND
20	RD	Reset drain	+12 V
21	P+	TE-cooler+	
22	Th2	Thermistor	
23	IG2V	Test point (vertical input gate-2)	-8 V
24	IG1V	Test point (vertical input gate-1)	-8 V
25	P2V	CCD vertical register clock-2	
26	P1V	CCD vertical register clock-1	
27	TG	Transfer gate	Same pulse as P2V
28	RG	Reset gate	

Specifications of built-in TE-cooler (Typ., vacuum condition)

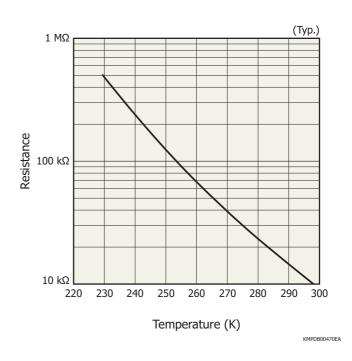
Parameter	Symbol	Condition	Specification	Unit
Internal resistance	Rint	Ta=25 °C	1.6	Ω
Maximum heat absorption*17	Qmax		4.0	W

*17: This is a theoretical heat absorption level that offsets the temperature difference in the thermoelectric cooler when the maximum current is supplied to the unit.

Current (A)

KMPDB0469EA

611



Specifications of built-in temperature sensor

A thermistor chip is built in the same package with a CCD chip, and the CCD chip temperature can be monitored with it. A relation between the thermistor resistance and absolute temperature is expressed by the following equation.

 $\begin{array}{l} \mathsf{RT1} = \mathsf{RT2} \times \mathsf{exp} \; \mathsf{BT1/T2} \; (1/\mathsf{T1} - 1/\mathsf{T2}) \\ \mathsf{RT1:} \; \mathsf{Resistance} \; \mathsf{at} \; \mathsf{absolute} \; \mathsf{temperature} \; \mathsf{T1} \; [\mathsf{K}] \\ \mathsf{RT2:} \; \mathsf{Resistance} \; \mathsf{at} \; \mathsf{absolute} \; \mathsf{temperature} \; \mathsf{T2} \; [\mathsf{K}] \\ \mathsf{BT1/T2:} \; \mathsf{B} \; \mathsf{constant} \; [\mathsf{K}] \end{array}$

The characteristics of the thermistor used are as follows. R298=10 k Ω B298/323=3900 K

Precautions

- If the thermoelectric cooler does not radiate away sufficient heat, then the product temperature will rise and cause physical damage or deterioration to the product. Make sure there is sufficient heat dissipation during cooling. As a heat dissipation measure, we recommend applying a high heat-conductivity material (silicone grease, etc.) over the entire area between the product and the heat-sink (metallic block, etc.), and screwing and securing the product to a heatsink.
- Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- · Avoid directly placing these sensors on a work-desk or work-bench that may carry an electrostatic charge.
- · Provide ground lines or ground connection with the work-floor, work-desk and work-bench to allow static electricity to discharge.
- · Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Implement these measures according to the amount of damage that occurs.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- · Image sensors
- Technical information
- · FFT-CCD area image sensor

Driver circuit C11860 (sold separately) for CCD image sensor (S11850-1106, S11511 series)

The C11860 is a driver circuit developed for the Hamamatsu CCD image sensor S11850-1106 and S11511 series.

Features

- Built-in 16-bit A/D converter
- The sensor circuit board and interface circuit board are connected using a flexible cable.
- Interface: USB 2.0
- External synchronization capable
- Single power supply: +5 VDC
- Sensor cooling control (approx. +5 °C)

Information described in this material is current as of October 2016.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8

France: Hamanatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01

Italy: Hamamatsu Photonics Italia S.r.l.: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39) 02-93581733, Fax: (39) 02-93581741 China: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Beilu, Chaoyang District, Beijing 100020, China, Telephone: (86) 10-6586-6006, Fax: (86) 10-6586-2866